Solutions with moving singularities for a semilinear parabolic equation
نویسندگان
چکیده
منابع مشابه
Construction of Eternal Solutions for a Semilinear Parabolic Equation
Abstract. Eternal solutions of parabolic equations (those which are defined for all time) are typically rather rare. For example, the heat equation has exactly one eternal solution – the trivial solution. While solutions to the heat equation exist for all forward time, they cannot be extended backwards in time. Nonlinearities exasperate the situation somewhat, in that solutions may form singula...
متن کاملEternal Solutions and Heteroclinic Orbits of a Semilinear Parabolic Equation
This dissertation describes the space of heteroclinic orbits for a class of semilinear parabolic equations, focusing primarily on the case where the nonlinearity is a second degree polynomial with variable coefficients. Along the way, a new and elementary proof of existence and uniqueness of solutions is given. Heteroclinic orbits are shown to be characterized by a particular functional being f...
متن کاملGlobal Asymptotic Behavior of Solutions of a Semilinear Parabolic Equation
We study the large time behavior of solutions for the semilinear parabolic equation ∆u+V up−ut = 0. Under a general and natural condition on V = V (x) and the initial value u0, we show that global positive solutions of the parabolic equation converge pointwise to positive solutions of the corresponding elliptic equation. As a corollary of this, we recapture the global existence results on semil...
متن کاملCritical Exponents for a Semilinear Parabolic Equation with Variable Reaction
In this paper we study the blow-up phenomenon for nonnegative solutions to the following parabolic problem: ut(x, t) = ∆u(x, t) + (u(x, t)) , in Ω× (0, T ), where 0 < p− = min p ≤ p(x) ≤ max p = p+ is a smooth bounded function. After discussing existence and uniqueness we characterize the critical exponents for this problem. We prove that there are solutions with blow-up in finite time if and o...
متن کاملLocalized Solutions of a Semilinear Parabolic Equation with a Recurrent Nonstationary Asymptotics
We examine the behavior of positive bounded, localized solutions of semilinear parabolic equations ut = ∆u + f(u) on RN . Here f ∈ C1, f(0) = 0, and a localized solution refers to a solution u(x, t) which decays to 0 as x → ∞ uniformly with respect to t > 0. In all previously known examples, bounded, localized solutions are convergent or at least quasiconvergent in the sense that all their limi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2009
ISSN: 0022-0396
DOI: 10.1016/j.jde.2008.09.004